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Abstract— The relationship between the various Planck mean coefficients in the optically thin limit is

discussed in terms of isothermal curves of growth. The specification of a general thin limit is shown to

require two restrictive statements-- one specifies the optical depth to be small and the other states the

degree of radiative nonequilibrium. In general the limit is scaled by both the ordinary and modified

Planck means. For linearized problems near radiative equilibrium, however, these two means reduce to the
linear Planck mean that alone acts as the inverse scaling length.

NOMENCLATURE
B,, Planck function;

I, specific intensity ;
r, space variable;
T, temperature;
a,, spectral absorption coefficient;
.p, linear Planck mean coefficient;
8yp, modified Planck mean coeflicient ;
&p,  ordinary Planck mean coefficient ;
v, spectral frequency.
Superscripts
- quantity restricted to certain frequency

0, ranges by the integration convention.

Subscripts
0 quantity pertaining to the boundary.

1. INTRODUCTION
THE OPTICALLY thin limit is a useful concept
because it greatly simplifies the mathematical
and physical complexities of radiative transfer.
It therefore serves the academician as a teaching
device and the researcher as a limit that must be
contained in any new formulation. For gases in
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molecular equilibrium, this limit is obtained by
two different methods. One approch neglects
the boundary conditions and argues directly
from the differential equation of radiative
transfer (cf. [1], p. 465). The spectral specific
intensity is taken as being much less than the
Planck function for some range of frequency
and some region in space. This leads to the
definition of the well-known Planck mean
emission coefficient that acts as a single inverse
scaling length for radiative transfer in the
emission-dominated limit. The second approach
is argued from the general solution of the
transfer equation, which contains the boundary
conditions (see [2], p. 214). Here the spectral
optical depth is assumed much less than unity.
This defines the ordinary Planck mean and a
modified absorption Planck mean [3]. The
latter is a spectral mean where the gaseous
absorption coetficient is weighted by the incident
intensity at the boundary. For a black-body
boundary, the Planck function at a specified
temperature becomes the weighting function.
The conclusion is that the ordinary Planck mean
scales optically thin problems when boundary
conditions can be neglected, but two means,
ordinary and modified, scale the more general
thin limit.
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In a recent note [4] (also cf. [S]) it is shown
that the thin limit is scaled by the yet ditferent
linear Planck mean for problems near radiative
equilibrium. This mean is weighted by the
temperature derivative of the Planck function,
evaluated at the reference state of radiative
equilibrium. The same mean is also an intrinsic
consequence of applying the nongrey substitute-
kernel approximation to the linearized, radiative
transmission functions [6].

The purpose of this paper is to show how the
above Planck mean coefficients are related and
necessary to describe the general optically thin
limit. The relationship between the thin-gas
and emission-dominated limits is first discussed
to show that the latter is merely a more restrictive
subcase of the former. The relationship between
the various Planck means is then discussed in
the simplest manner by constructing the curves
of growth for a constant-property (isothermal)
sl1b of gas. The optically thin limit is forced to
take on all degrees of radiative nonequilibrium
by bounding the slab with a variable-temperature
black wall. For general problems of radiative
nonequilibrium, we will see that the thin limit
is scaled by both the ordinary and modified
Planck means. Near radiative equilibrium,
however, these two means combine to form the
linear Planck mean that alone scales linearized
problems.

2. OPTICALLY THIN LIMIT

The equation governing the spectral specific
intensity I, for a nonscattering gas in molecular
equilibrium can be written, with the relatively
small time-derivative term omitted, as (see [1],
p. 463)

oI,

or

The subscript denotes values at the spectral
frequency v; a, is the volumetric absorption
coefficient, B, the Planck function, and r the
distance measured from the point at which I,
is being considered and in the direction opposite

(1)

=a,(I, — B,).
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to the direction of radiative propagation. For
incident, black-body radiation characterized
by the temperature T; at the boundary r = r,
the exact solution of equation (1) for paths
through a uniform gas is

Iv(r = 0) = B\(T(|)) exp(—“v’o) + B\(T)

[ —exp(—ayro)l.,  (2)

where T is the temperature of the gas. A
constant-property slab of gas is not essential to
the arguments that follow and is chosen only
for its simplicity.

We now adopt the concept that the general
optically thin limit is stated as

3)

for all frequencies and directions of interest.
Expanding equation (2) to first order in our
small parameter, we obtain

ol <€ 1

I\,(I‘ = 0) = Bv(TO) [1 - 0‘\-"0]
+ B(TYaury + ..., 4)

where B(T;) and B,(T) are implied to be of the
same order of magnitude. Three subcases, that
appear in the literature, of this general thin limit
are obtained by further restrictive statements on
the radiating boundary. The condition that
B(Ty) € B(T) gives the emission-dominated
limit discussed by Vincenti and Kruger [3].
When B(T;) » B,(T) we obtain an absorption-
dominated limit, and if B(T,) ~ B(T), such
that we can expand B(T) about T, we obtain
the emission-controlled limit introduced by
Cogley et al. [4].

3. CURVES OF GROWTH

These various limits, and all intermediate
situations, are simply displayed through curves
of growth, which are merely plots of the
frequency-integrated specific intensity vs. an
optical depth. Integrating equation_(2) over all
frequencies, and further splitting this interval
into that for which «, is nonzero and that for
which «, is zero [6], we obtain
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Ir=0)— | B(Ty)dv
a, #0
[ BJT)dv

| [BATy) — B(T)] exp(— aro)dv
=1 4220 . (5

a,=0
Here we assume that the absorption coefficient
is of such spectral width that averages weighted
to the Planck function are relevant. That is, we
are not considering transport where the line is
spectrally narrow with respect to the spectral
width of B,. Furthermore, absorption coefficients
that exhibit phenomena characteristic of
~wings” have curves of growth that are quite

{ B(T)dv
a, #0

lim 0 I(r = 0) - avi B‘(TO) dv
0N ar, [ B(T)dv
ay#0

{ aB(T)dv { BTy dv
__ ay#0 a,*¥0

(or any other directly relatable ratio) measures
the degree of radiative nonequilibrium, with
Ty/T ~ 1 representing the near equilibrium
situation. The limit r, -0 for a given a,
represents the optically thin limit of interest.
The terminating slope of each of the curves in
Fig. 1, which is the inverse scaling length for the
thin limit, is found analytically to be

{. B(T)dv ©

ay#0

{ B(T)dv "~

av#0

The first term on the right-hand side is the ordinary Planck mean &, while the second term is the
modified Planck mean &, both defined for a limited frequency range. For T,/T = 0 or <1, the
situation is emission-dominated and &, alone scales the thin limit. For T,/T = o or »1, the
absorption dominated situation is obtained and &,,, alone scales the thin limit. When T,/T ~ 1 we
can expand the right-hand side of equations (5) about T = T, and obtain the terminating slope as

lim | @ Ir =0) _a‘,lo B(Ty)dv

[ a,dB,dT|odv
av=0

207 re [ B(Ddv
a,#0

[ B(Ty)dv

av¥0

different in the optically thick limit from those
shown in Fig. 1 (see e.g. [7]). This has no effect,
however, on the present thin-limit arguments.

Since problems in nongrey radiative transfer
have an infinite number of inverse scaling lengths
(one for each spectral value of o), we cannot plot
generally scaled curves of growth. We can,
however, plot the left-hand side of equation (5)
vs. ry in a schematic manner to display the
general optically thin limit. This is done in
Fig. 1.

The curves themselves are merely exponential-
like sketches since their exact shape would
depend on a,, which we can leave unspecified for
present purposes.* The temperature ratio Ty/T

* Each curve is monotonic, since it can be represented by
a

an infinite series of the form 1 + Y a;exp(—b,r,), where
=1

the a;’s and b;’s are constants. It is easily seen that the
depending on the ratio T,/T, such that the curves never
intersect.

(T — T,)+ higher order terms. (7)

The bracketed term on the right, except for the
normalization, is the linear Planck mean
&, p, for a restricted frequency range (cf. equation
(31b) of [6]). The linearized situation is therefore
degenerate in the sense that it is scaled by a single
parametric length.

4. CONCLUSIONS

When specifying an optically thin limit, one
must state both (1) that the optical paths of
interest are small and (2) the degree of radiative
nonequilibrium of the particular problem under
investigation. The second statement allows one
to specify which curve, of the many in Fig. 1, is
being followed to small optical depths. The
general thin limit is scaled by the difference of
two inverse scaling lengths, i.e. 85 and &,,,. When
the gas is near radiative equilibrium, these two
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F1G. 1. Schematic curves of growth for constant-property paths.
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COEFFICIENTS MOYENS DE PLANCK DANS LA LIMITE D’EPAISSEUR OPTIQUE

Résumé— La relation entre les différents coefficients moyens de Planck dans la limite d*épaisseur optique
est envisagée a partir des courbes de croissance isotherme. On montre que la spécification d’une limite
d’épaisseur en général, requiert deux aspects restrictifs, Le premier spécific que 1’épaisseur optique doit
étre petite et I'autre établit le degré de déséquilibre de rayonnement En général, I’échelle des limites
d’épaisseur est établie 4 la fois par les coefficients moyens de Planck usuels et modifiés. Cependant, dans
les problémes linéarisés au voisinage de 1'équilibre de rayonnement, les deux moyennes sont confondues
avec la moyenne linéaire des coefficients de Planck qui évolue comme I’échelle inverse des longeurs.

MITTLERE PLANCK-KOEFFIZIENTEN IM OPTISCH DUNNEN GRENZFALL

Zusammenfassung—Die Bezichung zwischen den verschiedenen mittleren Planck-Koeffizienten im optisch
diinnen Grenzfall wird an Hand isothermer Wachstumskurven diskutiert. Es wird gezeigt, dass die
Betrachtung des allgemeinen, optisch diinnen, Grenzfalls auf zwei massgebende Bedingungen fiithrt—dic
eine fordert, dass die optische Tiefe klein ist, die andere bestimmt den Grad des Strahlungsgleichgewichtes.
Im allgemeinen wird der Grenzfall sowohl an den gewdhnlichen als auch an den modifizierten Planck-
schen Mittelwerten bemessen. Fiir linearisierte Probleme in der Nihe des Strahlungsgleichgewichtes
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reduzieren sich jedoch diese beiden Mittelwerte zum linearen Planckschen Mittelwert, der allein als
inverse Bezugslidnge auftritt.

CPEOJHUVE KO3DOOUUMNEHTH! IIIAHKA JIJIST OUTIIUYECKHN
TOHKOWN CPE]IDLI

AnroTanua—CoOTHOUIEHME MEKAY pPABHUuYHbLIMU cpeinuMi kosdduumentamu Ilaanka »
NPEReIbHOM CIyYae ONTHYECKM TOHKCH cpefbl paccMarpuBaeTca B BHLIC M30TEPMUUECKUX
kpuBsix pocra. [lokasaHo, 4TO oupejenenne Npeesa TOHKON cpedbl Tpelyer ABYX OTpaH-
NYEHMH : MaJIol onTHYeCKOH rayOuHBL M OHpejeseHHO CTENeHH JIYYIICTOT0 HEePAaBHOBECHS.
B o0mewm, mpegen nameHAeTCs B COOTBETCTBMH Kak ¢ OGBIKHOBEHHBIM, TAaK M ¢ MOAMQUITHPO-
BaHHBIM xO3pduiumenTom Ilmanka. J[iad JUHeapUBOBAHHBIX 3aAa4 BOIUBH JIyYHCTOrO
paBHOBecHs, 062 3TUX CPeJHUX KOBPOUUHEHTa CBOAATCH K JUHEHHOMY CpefHeMy Kooddui-
nenry Ilnanka, KOTOpEIY siBAAETCA 00PATHOM BeJMUMHON AamHe Macuiraba.
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